973 resultados para CELLULAR UPTAKE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt(II) complexes of terpyridine bases Co(L)(2)](ClO4)(2) (1-3), where L is 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2''-terpyridine (an-tpy in 2) and 4'-(1-pyrenyl)-2,2':6',2''-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1 : 2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H2O (2 : 1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K-b value of similar to 10(6) M-1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC50 values of 24.2 and 7.6 mu M, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrenylterpyridine (pytpy) oxovanadium(IV) complexes VO(pytpy)(L)]Cl-2 (1-6) of the dipyridophenazine bases (L), viz., dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4), benzo-i]dipyrido3,2-a:2',3'-c]phenazine (dppn in 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 6) were prepared, characterized and their DNA binding, photocleavage activity and photocytotoxicity studied. The complexes which showed a d-d band near 750 nm in DMF are efficient binders to calf thymus DNA (K-b: 3.2 x 10(5)-2.9 x 10(6) M-1). The complexes showed significant pUC19 DNA cleavage in near-IR light of 785 nm forming center dot OH radicals and photocytotoxicity in HeLa cells in visible light with the benzo-i] dipyrido3,2-a:2',3'-c]phenazine complex 5 showing a remarkably low IC50 value of 0.036 mu M. Flow-cytometric analysis shows a high sub-G1 phase cell cycle arrest in HeLa cells by the complexes on photo-irradiation. The photocytotoxicity correlates well with the hydrophobicity, photosensitizing ability and DNA binding propensity of the complexes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four dinucleating bis(thiosemicarbazone) ligands and their zinc complexes have been synthesized and characterized by multinuclear NMR (H-1 and C-13), IR, UV-Vis, ESI-MS and fluorescence spectroscopic techniques. Their purity was assessed by elemental analysis. Cytotoxicity was tested against five human cancer cell lines using the sulphorhodamine B (SRB) assay, where one of the complexes, 1,3-bis{biacetyl-2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} propane (6), was found to be quite cytotoxic against MCF-7 (breast cancer) and HepG2 (hepatoma cancer) cell lines, with a potency similar to that of the well known anticancer drug adriamycin. It is evident from the cellular uptake studies that the uptake is same for the active complex 6 and the inactive complex 8 (1,6-bis{biacetyl- 2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} hexane) in MCF-7 and HepG2 cell lines. In vitro DNA binding and cleavage studies revealed that all complexes bind with DNA through electrostatic interaction, and cause no significant cleavage of DNA. (C) 2'13 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron(III) complexes of pyridoxal (vitamin B6, VB6) or salicylaldehyde Schiff bases and modified dipicolylamines, namely, Fe(B)(L)](NO3) (15), where B is phenyl-N,N-bis((pyridin-2-yl)methyl)methanamine (phbpa in 1), (anthracen-9-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (anbpa in 2, 4) and (pyren-1-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (pybpa in 3, 5) (H2L1 is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridine (13) and H2L2 is 2-(2-hydroxyphenyl-imino)methyl]phenol), were prepared and their uptake in cancer cells and photocytotoxicity were studied. Complexes 4 and 5, having a non-pyridoxal Schiff base, were prepared to probe the role of the pyridoxal group in tumor targeting and cellular uptake. The PF6 salt (1a) of complex 1 is structurally characterized. The complexes have a distorted six-coordinate FeN4O2 core where the metal is in the +3 oxidation state with five unpaired electrons. The complexes display a ligand to metal charge transfer band near 520 and 420 nm from phenolate to the iron(III) center. The photophysical properties of the complexes are explained from the time dependent density functional theory calculations. The redox active complexes show a quasi-reversible Fe(III)/Fe(II) response near -0.3 V vs saturated calomel electrode. Complexes 2 and 3 exhibit remarkable photocytotoxicity in various cancer cells with IC50 values ranging from 0.4 to 5 mu M with 10-fold lower dark toxicity. The cell death proceeded by the apoptotic pathway due to generation of reactive oxygen species upon light exposure. The nonvitamin complexes 4 and 5 display 3-fold lower photocytotoxicity compared to their VB6 analogues, possibly due to preferential and faster uptake of the vitamin complexes in the cancer cells. Complexes 2 and 3 show significant uptake in the endoplasmic reticulum, while complexes 4 and 5 are distributed throughout the cells without any specific localization pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the spectral characteristics of bovine serum albumin (BSA) protein conjugated single-wall carbon nanotubes (SWNTs), and quantify their uptake by macrophages. The binding of BSA onto the SWNT surface is found to change the protein structure and to increase the doping of the nanotubes. The G-band Raman intensity follows a well-defined power law for SWNT concentrations of up to 33 μg ml-1 in aqueous solutions. Subsequently, in vitro experiments demonstrate that incubation of BSA-SWNT complexes with macrophages affects neither the cellular growth nor the cellular viability over multiple cell generations. Using wide spot Raman spectroscopy as a fast, non-destructive method for statistical quantification, we observe that macrophages effectively uptake BSA-SWNT complexes, with the average number of nanotubes internalized per cell remaining relatively constant over consecutive cell generations. The number of internalized SWNTs is found to be ∼30 × 106 SWNTs/cell for a 60 mm-2 seeding density and ∼100 × 10 6 SWNTs/cell for a 200 mm-2 seeding density. Our results show that BSA-functionalized SWNTs are an efficient molecular transport system with low cytotoxicity maintained over multiple cell generations. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored.

Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions.

Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred.

Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flavonoids have been proposed to act as beneficial agents in a multitude of disease states, including cancer, cardiovascular disease, and neurodegenerative disorders. The biological effect of these polyphenols and their in vivo circulating metabolites will ultimately depend on the extent to which they associate with cells, either by interactions at the membrane or more importantly their uptake. This review summarises the current knowledge on the cellular uptake of flavonoids and their metabolites with particular relevance to further intracellular metabolism and the generation of potential new bioactive forms. Uptake and metabolism of the circulating forms of flavanols, flavonols, and flavanones into cells of the skin, the brain, and cancer cells is reviewed and potential biological relevance to intracellular formed metabolites is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and incorporation into oligodeoxynucleotides of two novel derivatives of bicyclothymidine carrying a cationic diaminopropyl or lysine unit in the C(6′)-β position is described. Compared to unmodified DNA these oligonucleotides show Tm-neutral behavior when paired against complementary DNA and are destabilizing when paired against RNA. Unaided uptake experiments of a decamer containing five lys-bcT units into HeLa and HEK293T cells showed substantial internalization with mostly cytosolic distribution which was not observed in the case of an unmodified control oligonucleotide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell penetrating peptides (CPP) are peptides of 10 to 30 residues derived from natural translocating proteins. Multivalency is known to enhance cellular uptake for the Tat peptide and closely related polycationic sequences. To test whether multivalency effects on cellular uptake might also occur with other CPP types, we prepared multivalent versions of the strongly cationic Tat, the amphipathic sequences Antp, pVEC and TP10, and the polyproline helix SAP by convergent thioether ligation of the linear CPP onto multivalent scaffolds, and evaluated their uptake in HeLa and CHO cells, intracellular localization, cytotoxicity and hemolysis. While multivalency did not increase the cellular uptake of pVEC or SAP, multivalency effects on uptake comparable to Tat were observed with TP10 and Antp, which are attributable to their polycationic nature. The efficient synthetic protocol for these divalent CPP and their localization in the cytoplasm suggest that CPP might be useful for application in cargo delivery into cells.